Lesson: Complementary Probability

September 4, 20XX

Objective

I can calculate the probability of a complementary event

- "I can know how likely a thing is not to happen if I know how likely it is to happen"
- Event: literally ally anything that happens by chance
- Eg. heads or tails, result of dice roll, rain, the Eels winning

Vocab review

- Complementary: contrasting. Things that go together but are different
- e.g. rainy and sunny, heads and tails, win or lose

If getting heads on a coin flip is 50% likely, what is the likelihood we'll get tails?

Pie chart of dice roll

Dice Probabilities

New pie chart of dice roll

Dice roll

How do we calculate this probability on paper?

- The pie is 1 whole.
- $P(1)=1 / 6$ of the pie
- $P($ not rolling 1$)=$ you tell me, idk
- Btw we give name $P\left(1^{\prime}\right)$ to $P($ not rolling 1$)$
- It's just a bit shorter

Formula

So we had $\%$ because
$1 / 6+5=6 / 6=1$
How do we say this for a general case? (That is, not just dice)
Let's say A is some event
$P(A)+P\left(A^{\prime}\right)=1$
Remember: total probability is always 1 !
So, $P\left(A^{\prime}\right)=1-P(A)$

Now for some examples

